I

F DEDIS

I Decentralized Distributed
Systems Laboratory

Ecole Polytechnique Fédérale de Lausanne

Optimizing Commit-and-reveal for Smart Contracts

by Julie BETTENS

Master Thesis

Approved by the Examining Committee:

Prof. Dr. Bryan Forp
Thesis Advisor

Yolan ROMAILLER
External Expert

EPFL IC IINFCOM DEDIS
BC 210 (Batiment BC)
Station 14
CH-1015 Lausanne

21% June 2024

A wise person is mightier than a Strong one;
a knowledgeable person than a powerful one.
— Proverbs 24:5

Dedicated to the wonderful people at polyglfts, without whom I would not be who I am today.

Acknowledgments

I would like to thank Shufan Wang for prior work on the codebase, Mahsa Bastankhah for her work
on the SMC code, and the Dela, Kyber, and go-ethereum maintainers. I would also like to thank my
parents for supporting me.

This project would not have been possible without the work of Prof. Bryan Ford and the DEDIS
team, as well as the IC faculty, administration, student advocacy associations, and my fellow students.
I also thank the International Association for Cryptologic Research for organizing Eurocrypt 2024
and maintaining the Cryptology ePrint Archive.

Finally, I wish to thank Prof. Payer for the XIEX template.

Lausanne, 21% Fune 2024 Julie BETTENS

Abstract

Delayed execution is an alternative architecture for blockchains that allow users to encrypt the content
of their transactions until they are executed. We design and evaluate Dawn: an implementation
of delayed execution on Ethereum. We model the applications that benefit from Dawn, explore
implementations based on threshold cryptography and sequential computation, and evaluate the
feasibility of such an approach on an existing blockchain. Beyond front running prevention and
censorship resistance, we show how this design change improves over pure smart contract layer
solutions when it comes to sealed-bid auctions, lotteries, and voting.

Contents

Acknowledgments
Abstract
1 Introduction

2 Background

2.1 Blockchain Networks o
22 Auctions
2.3 Maximum Extractable Value
2.4 CommitandReveal
2.5 Delayed Execution
2.6 Cryptographic Primitives L
2.7 Ethereum Specifics
3 Design
3.1 Requirements
3.2 TimedRelease e
3.3 Symmetric Encryption

4 Implementation

4.1 Data Structures e e
4.2 Secret Management Committee
4.3 Time-Lock Puzzles. e
4.4 Application

5 Evaluation

5.1 GasPricing
5.2 Throughput
5.3 Observations e

10
11

13

15
15
16
17

19
20
21
21
22

6 Related Work
6.1 Final Considerations

7 Conclusion

Bibliography

Chapter 1

Introduction

In decentralized applications, most information produced by users is eventually public. However,
timing of the release of information matters a lot. This is evident not only in instances where front
running is a concern, but also in setting such as auctions where multiple parties reveal information.
As a result, various commit-and-reveal protocols are often used: for example in the Ethereum Name
Service, a popular name service application, registering a name is a two-step process where users
first publish a commitment to their desired name and later open this commitment. [ENS22] Zhang
et al. point out that, while the same mechanism can be extended to sealed-bid auctions, it comes with
substantial drawbacks. [Zha+24]

An approach purely based on two-step commit-and-reveal inherently expects participants to send
a reveal message, which raises the question of how to handle failure to reveal. There is no general
solution: one cannot simply wait forever for the last user to reveal, so protocols often disincentivize
failure to reveal via collateral requirements. Unfortunately, this is subject to economic attacks if the
incentives can exceed the collateral, as well as denial-of-service attacks on the revealing participant.
As a result, a protocol that can guarantee the reveal occurs in all cases would significantly improve
the situation.

A subset of the problem has been addressed by systems such as F3B[Qu23] and Fairblock[MGZ22],
in that they aim to protect a single transaction at a time from front running. Shutter Network[K22]
in its current form provides temporary encryption of off-chain votes. Building on their research,

we aim to explore a more generalized approach to serving commit-and-reveal applications on the
blockchain.

Zhang et al. introduce the delayed execution architecture, in which transactions only need to be
executed after the block attesting to their order has been finalized. The intended effect is that as
long as transactions do not need to be executed, they can be temporarily encrypted. As a result, the
information contained within the transactions isn’t revealed too early, enabling a range of use cases

such as sealed-bid auctions, lotteries, on-chain voting. This is achieved without requiring users to
lock collateral, and while removing the incentive for denial-of-service attacks.

In this work, we construct a prototype of a delayed encryption blockchain based on Ethereum.
We aim to show that commit-and-reveal with delayed execution is more versatile and simpler to use
than hash-based commit-and-reveal, and just as efficient.

We will measure the costs and performance impact and find that Dawn is viable in a realistic
setting. However, we find that the added latency adversely impacts feedback loops both inside the
protocol and outside,

We will generalize front running protection to obtain a model that applies to a wider class of use
cases. We will also design a data structure that allows storing past transactions in plaintext and does
not require an additional fee payment mechanism.

Chapter 2

Background

2.1 Blockchain Networks

A decentralized system is an open computer network that allows any computer in the world to join
and serve any role. In principle, no participant is a single point of failure or has special authority.
Decentralized systems tolerate mutually distrusting participants, and coordinated malicious nodes
up to a threshold. Decentralized systems aim for a high degree of censorship resistance and trust
minimization. Bitorrentis an example of such a system.

For our purposes, a blockchain network is a decentralized system that is able to realize total order
broadcast, i.e. arbitrary messages submitted to the network in a specific way will be included in a
canonical sequence that any node in the network can learn. Given this primitive, one can create a
shared ledger by specifying how people following the ledger should interpret broadcast messages as
asset transfers. In practice, the ledger is often integrated with the total order broadcast functionality
to incentivize it. Transfers are generally grouped into blocks by the total order broadcast mechanism,
and those blocks contain the hash of the previous block to indicate the total order, forming a block
chain. We call the node that created the block its block producer and the nodes actively participating
in the ordering process Consensus Group (CG).

The earliest instance of a blockchain is Bitcoin[Nako8]. It aims to support transfers of its own
native asset, bitcoins, to implement a digital cash system. To extend the functionality of blockchains,
networks such as Ethereum[Buti4] turn the ledger into a fully fledged transactional database. In-
side such a database, programs known as smart contracts can be placed by any participant so that
other participants can interact with them. This is the basis for many decentralized applications which
can be financial products, name systems, computational services, communication and coordination
infrastructure, etc.

2.2 Auctions

In [Vicé61, §2], Vickrey studies the effects of two auction mechanisms: the progressive auction, where
bidders are allowed to announce new bids until the auction ends, and the Dutch auction, where the
auctioneer announces decreasing prices until a single bidder announces that they accept it. Auctions
force bidders to estimate the maximum price that every other bidder is willing to pay to outbid them
by the smallest amount possible. In progressive auctions, bidders’ maximum prices are gradually
discovered as they bid, whereas in Dutch auctions, other bidders only have one chance to guess it
correctly — barring repeat auctions.

Further, in [Vic61, §2], Vickrey introduces sealed bid auctions. He shows that, if the best bid
executes at the price that it specifies, the procedure is equivalent to a Dutch auction. If instead, the
winning bid executes at the price of the second best bid, the procedure is equivalent to a progressive
auction. These are known as first price and second price sealed-bid auctions. This gives us a basis to
examine existing decentralized finance applications and suggest how to take advantage of the sealed
bids primitive while maintaining functionality.

Frankencoin is an application that aims to create a decentralized stable currency backed by on-
chain collateral, pegged to the Swiss Franc. It allows user to create pegged coins in exchange for
collateral, and uses Dutch auctions to liquidate insolvent users. Since Frankencoin does not rely on
price feeds, the auctions require two phases: one where the collateral can be bought at par, thereby
showing that the entity triggering the liquidation was at fault, and one where price decreases. This
mechanism is sensitive to price fluctuations. We suggest that a second-price sealed-bid auction could
reduce this risk. [MM22]

When a Dutch auction is conducted on a blockchain, the application should expect to sell at a
discount due to the fact that discrete steps in price are offered at every block. Setting the auction
parameters optimally is non-trivial. [MR24] When selling off volatile collateral, price movements
during delays could adversely impact either the winning bidder or the application. In the case of a
progressive auction, bidders may also repeatedly outbid each other, which results in more transaction
fees. Thus, running the equivalent type of sealed-bid auction can be advantageous.

2.3 Maximum Extractable Value

On blockchain networks, users who are not able to produce a block themselves must transmit their
transactions to a node that can in order to see them included. In the simpler blockchain designs, this
is done by broadcasting the transaction widely so that all potential block producers will receive it.
More advanced architectures involve sending the information only to a specific block producer or a
subset, sometimes introducing a trust relationship between the user and the block producers.

Since at least one actor, the eventual block producer, can see the block’s transactions before it is
published, it is possible to simulate the effects of a particular ordering of transactions. As a result,
block producers are incentivized to look for ways to reorder transactions, remove them, and/or add
their own so as to profit. This phenomenon known as Maximum Extractable Value (MEV) has led
to the development of a sophisticated block building ecosystem where specialized actors cooperate
with block producers to find opportunities and share the profits.

We should note that while some types of MEV harm unsophisticated users, some others are
beneficial. For example, if an on-chain exchange offers a price at odds with the broader market
at any point in the block, the block producer is in a position to arbitrage it and give users a more
representative price. This makes the market more efficient. Conversely, front running, which is a
strategy that involves learning about a future trade and executing a trade ahead of it to benefit from
the price impact, can occur and harms the target financially. [Dai+19]

To protect themselves against front running, some users use centralized services such as Flash-
bots Protect’ and MEV Blocker?, that share their transaction with trusted actors tasked with ensuring
that it makes it into a block without being front run. Besides its reliance on trusted third parties, this
solution is known to sometimes fail if the block is displaced by a competing block. At this point,
the transaction has been revealed publicly and can be included in a new block — along with a front
run. [KB21]

2.4 Commit and Reveal

Some decentralized applications employ a pattern known as commit-and-reveal to defeat front run-
ning. Namely, they require a user to commit: post a hash of their chosen value concatenated with
a random value in a first transaction, and then reveal: show the preimage of the hash once the first
transaction has been included. The Ethereum Name Service allows users to exclusively own human-
readable names and associate them with less convenient identifiers such as public keys. When buying
a domain name in ENS, two-step commit-and-reveal is used so that a malicious actor cannot take the
name from the user that wants it and try to sell it back at a higher price. [ENS22] While it achieves
the security goal, this pattern requires two transactions, which costs money and degrades user expe-
rience. ENS also sold names using a sealed-bid second price auction using commit-and-reveal from
2017 to 2019. [Xia+21, §3.1]

In [Zhu22] a construction for an on-chain sealed-bid auctions is proposed and implemented. It
requires bidders to commit to their bid and post collateral as high as the maximum expected bid, and
suffer losing their collateral if they fail to reveal.

‘https://protect.flashbots.net/
*https://mevblocker.io/

https://protect.flashbots.net/
https://mevblocker.io/

With RANDAO(ran17, §III.1], randao.org explore a protocol using a blockchain to allow many
mutually distrusting parties to generate an unbiased and unpredictable random number. Parties
first generate their own random number. They then commit some amount of cryptocurrency as
collateral and publish a commitment to their random number. Then, in the next phase, they reveal
their number to reclaim their collateral. The final random number is a deterministic combination of
all of the revealed random numbers. As a result, unless all participants collude, no one can bias or
predict the final output. A clear drawback of this protocol is the necessity for every contributor to
put up collateral and submit two transactions. Worse, the last contributor to reveal can compute the
random value and decide to forfeit their collateral if they can profit from altering the final output.

Another application of commit-and-reveal schemes is shielded voting in the context of on-chain
organizations. This allows voters to keep their choice confidential until the end of the voting period.
Importantly, it is not by itself a secret-ballot voting system since votes are revealed and linked to
their authors at the end of the process. Nonetheless, K. argues that hiding votes while voting is still
open avoids influencing undecided voters, and makes some attacks more costly. [K22] We note that
participants are not prevented from proving how they voted. Still, we will study shielded voting as
one of our motivating applications.

To the best of our knowledge, simple commit-and-reveal schemes are not used in production
outside of ENS. RANDAO planned to go in production in 2018 but did not follow through.3 We
could not find decentralized exchanges based on this method, likely due to its clunkiness and the
problems with witholding reveals. Overall, these types of applications seem to be at an impasse
because of the impracticality of simple commit-and-reveal schemes.

2.5 Delayed Execution

In [Zha+24], Zhang et al. introduce the concept of delayed execution, which re-architectures the
blockchain system in such a way that executing transactions is not necessary at any point before
they are included in a canonical block. In turn, simulation of pending transactions can be prevented
by temporarily encrypting them. Importantly, they specify that all transactions and not just en-
crypted transactions are subject to delayed execution, otherwise unprotected transactions may be
used to front run. The goal is to enable sealed-bid auctions without collateral requirements. We will
show that it extends naturally to our other motivating applications: on-chain voting, randomness
generation and frontrunning protection.

Zhang et al. argue that, since the time-to-finality of the blockchain is interpreted by end users
that receive payments as the latency of the system, introducing delayed execution has no impact on
latency. We will argue that, while this is true in this case, many feedback loops are still disrupted.

SEthereum itself uses a mechanism derived from randao where BLS signatures are used as random numbers. [Edg23,
§2.9.2]

10

2.6 Cryptographic Primitives

We will now review the cryptographic primitives that we will use in Dawn.

A commitment scheme is akin to using sealed and opaque envelopes: it consists of the routine
Commit(pp, m, r) which outputs a commitment c given a message m and randomness r. The desired
security properties are hiding, meaning that ¢ does not reveal any information about m, and bind-
ing, meaning that it is infeasible to find distinct my, ry, my,r; s.t. Commit(mg,ry) = Commit(my,r;).
This formal treatment is consistent with the use of commitment schemes that we pointed out in de-
centralized applications: in ENS, users use a commitment to “lock in” their intent to register a name
without revealing it by publishing c. Later, they prove that they committed to this name by revealing
the randomness.

We will use Identity-based Encryption (IBE): a type of asymmetric encryption scheme where de-
cryption keys can be derived for arbitrary strings which we call identity labels. An IBE scheme
consists of four routines: Setup(1*) — (mpk, msk) which sets up the system with a master pub-
lic key, known to all participants, and its secret counterpart, known only by a trusted component;
Extract(msk,ID) — d which returns a decryption key matching the identity label ID € {0,1};
Encrypt(mpk, ID,m) — ¢ which encrypts a message so that it can be decrypted by the identity ID,
and Decrypt(mpk, d,c) — m which decrypts a ciphertext using a decryption key. For our purposes,
an IBE scheme is secure if the decryption key for an identity label is both necessary and sufficient to
decrypt messages encrypted towards that label. We refer to [BFo1] for the detailed security defini-
tion.

A threshold network is a group of nodes collectively possessing a secret key. A threshold param-
eter t is set, such that any t out of n nodes can reconstruct the secret, but no group of t — 1 can. The
network can thus tolerate up to t — 1 malicious nodes and up to n — t unavailable nodes.

In [BBHo6], Boneh, Boyen, and Halevi describe Threshold IBE (TIBE) schemes: IBE schemes where
the trusted component can be operated by a threshold network. They also describe Threshold Public
Key Encryption (TPKE): asymmetric encryption schemes where the decryption key is custodied by
a threshold of nodes.

A Distributed Key Generation (DKG) protocol allows a threshold network to create a shared secret
key without any single node ever knowing the full key, and without any group of nodes smaller than
the threshold being able to reconstruct it or use it. It can be used to generate a shared master key for
use in TIBE or TPKE.

Per [Bon+18], a Verifiable Delay Function (VDF) consists of three routines: Setup(l’l, t), which,
given a security parameter A and a delay parameter ¢ outputs the public parameters pp, defining a
group G; Eval(pp, x), which evaluates the function on x € G and outputs y € G and a witness 7, and
Verify(pp, x, y,), which checks if y is the unique result of evaluating the function on x. It must have

11

the following properties:

sequential Computing (y,) < Eval(pp, x) should be possible in ¢ sequential steps. y should be
indistinguishable from random, even with parallelization.

efficiently verifiable Computing Verify(pp, x, y, 7) should be quick, ideally poly-logarithmic in ¢.

unique for all x, it is not possible to find y, & such that Verify(pp, x, y, 7) = yes but y # Eval(pp, x).
(except with negligible probability and assuming a polynomially bounded adversary)

Wesolowski[Wes18] modifies Setup() to also return a trapdoor parameter. Knowing the trapdoor
allows one to “cheat” and evaluate the function much more quickly. This is also at the heart of how
Wesolowski constructs verifiability.

Timed-release cryptography is the problem of encrypting a message such that it can be only be
decrypted at a certain date. There exist two approaches:

1. In [May93], May suggests using multiple escrow agents to custody shares of a decryption key
and release them until some time passes or a specific event occurs. We will call this approach
Secret Management Committee (SMC).

2. In [RSWo6], Rivest, Shamir, and Wagner suggest using a sequential computation that can be
performed to reveal the decryption key. The number of computational steps lower bounds the
amount of time that will pass before the key is revealed. We will call this approach time-lock

puzzles.

An important advantage of the SMC approach is that it supports richer decryption policies than
just the passage of time. The decryption policy can be “Decrypt on the 21% of June 2024, but in can
also be “Decrypt whenever a human sets foot on Mars for the first time” for example.[May93]

May originally envisioned SMC nodes in a manner similar to anonymizing remailers, where each
message would be submitted with its decryption policy attached. While this is a sound approach, it
is more scalable to make use of TIBE. In this way, the decryption policy can be put in the identity
label, and SMC nodes do not need to handle the ciphertexts at all. In addition, only a threshold of

nodes needs to be trusted.

Zero knowledge (ZK) proof systems enable performing computation on confidential data with-
out revealing any part of that data but with the guarantee that the computation was performed
honestly. They can be used for confidentiality, but also for performance reasons, because verifying

the computation can be cheaper than performing it over again. [Ben+18]

12

2.7 Ethereum Specifics

We will now introduce some parts of the Ethereum architecture that are important to design and

evaluate our system.

The Ethereum execution environment, the Ethereum Virtual Machine (EVM), uses a single, unified
global state structure where program code and data are stored. Transactions are allowed to operate
that state one after the other. The state also keeps balances in a native currency unit, Ether which
is used to pay for transactions. Transactions are always initiated through an ECDSA keypair, which

must have a balance of Ether.

A sophisticated metering system determines the fee for a transaction: each byte of data, as well
as each instruction executed during the transaction has a cost in abstract units of gas. This allows
enforcing upper bounds on the amount of resources that nodes reading the blockchain have to use
and thus ensuring that they operate reliably. Transactions are required to specify a gas limit, which
is the maximum amount of gas they expect to consume. A transaction can only be included in a
block if the sender has enough Ether to cover this gas given the current gas price. Unused gas is then

refunded.

Since the London update in 2021[Eth24b], gas pricing on the main Ethereum network is influ-
enced by an automatic feedback loop, whereby a base fee value is adjusted up or down based on the
gas usage in the previous block. The value is denominated in Ether per unit of gas. If transactions bid
a higher base fee, the difference is returned, which saves users from engaging in an inefficient auc-
tion for gas. The base fee is burned, and an additional part of the fee is used to pay block producers
for inclusion. [EIP-1559]

For our purposes, Ethereum transactions consist of the following fields. We leave aside some

fields that are not relevant to the discussion.

nonce number used once, a sequential counter for transactions originating from the same sender;
max_priority_fee_per_gas the fee to give to the block producer upon inclusion;
max_fee_per_gas the maximum base fee to pay for this transaction;

gas the maximum units of gas to reserve for this transaction;

to the address of the account the transaction is directed towards;

value an amount of native currency to send to the receiver;

data arbitrary bytes to send along with the transaction: if the receiver is a smart contract, it will be
able to access this data and react to it with arbitrary logic;

13

v,r,s an ECDSA signature that also allows recovering the sender’s address, which is why an explicit
sender field is not necessary.

As of now, the main Ethereum network can produce a block every 12 seconds. Blocks are allowed
to consume up to 30 million gas units, but the fee mechanism targets 15 million. This corresponds to
2.5 and 1.25 million gas per second, respectively. [Eth24a]

The consensus protocol Gasper[But+20], which Ethereum uses, is able to guarantee that a block is
canonical after two checkpoints are included in it or in subsequent blocks. On Ethereum, checkpoints
normally occur every 384 seconds, which means under normal conditions, a block is known to be
canonical after 768 seconds at most. The CG can also keep extending the chain even if finality is not
being reached.

14

Chapter 3

Design

No one can hide as the sunrise illuminates all land at once. Dawn opens all commitments at once.
Dawn is our concept and prototype for an EVM blockchain with delayed execution.

3.1 Requirements

We formalize the requirements of Dawn as follows: Dawn allows n mutually distrusting parties to
compute a function of the form f(ey, ey, ..., e, st) — st” where e are shielded inputs chosen by the
parties, st is the application state and st’ is the updated application state. This allows us to specify
our security properties: fairness: no participant can alter their input based on the input of another
participant, and privacy: no one can alter the state based on any input. It is not a design goal to keep
the inputs confidential after f is computed.

Our model covers all our desired use cases: in the auction case, the inputs are the bids and f will
take the highest bid an settle the auction. In the RANDAO case, the inputs are random contributions
and f mixes them together. In the shielded voting case, the inputs are votes and f computes the
tally. In the front running protection case, there is one input, and f executes a trade based on the

input.

Indeed, our model emerged as a generalization of front running protection, which can itself be
considered a generalization of standard blockchain transactions: the Ethereum Yellow Paper[Woo024]
which attempts to formalize Ethereum, describes the action of a transaction as 0;,; = 7'(¢;, T), mean-
ing that a single participant gets to compute the state transition function 7" to produce the next
Ethereum state, with the current state and the transaction T of their choice as input. This is suffi-
cient to implement many applications directly, but there is no guarantee that o; cannot be altered
based on the information disclosed in T. As previously discussed, many solutions attempt to pro-

15

vide that guarantee. However, we provide a stronger guarantee by extending the model to multiple
parties.

In the absence of delayed execution, the security properties are typically implemented as a pro-
tocol with three phases: during the commit phase, a smart contract collects commitments from all
parties. During the reveal phase, parties open their commitments. In the execution phase, the con-
tract can act upon the revealed values. Additionally, the case where a participant does not open their
commitment during the allotted time requires a design decision. It is also important to ensure the
state is locked during the reveal phase. Note that by instantiating this protocol for random contribu-
tions and in such a way that parties who do not reveal their randomness forfeit their collateral, we
obtain the original RANDAO protocol.

By contrast, under delayed execution, the functionality can be achieved in two phases: during
the contribution phase, each participant sends a protected transaction containing their input. During
the execution phase, the contract can compute f and update the state. This is safe assuming that
the contribution phase duration is shorter than the delay, and that all transactions are subject to
delayed execution so that the state is protected. As a result, we sidestep the problem of unopened
commitments, and require half the amount of transactions in the typical case.

3.2 Timed Release

Timed release cryptography, introduced in Section 2.6, allows us to limit the encryption of transac-
tions in time.

The first approach that we will use is based on TIBE: the sender provides the block number of
an upcoming block, and the IBE label is set to that number. When the target block number is about
to be reached, the SMC will release the decryption key. We will select a verifiable TIBE scheme such
that the decryption key can be verified to be the correct decryption key for the label efficiently, i.e.
in a constant number of steps.

The second approach is a TPKE approach: we take the first approach, and replace the label with
the concatenation of the sender’s address and the transaction nonce. In turn, the SMC must re-
lease decryption keys for transactions when they appear in a finalized shadow block. We inherit the
verifiability from the first approach.

The third approach is based instead on time-lock puzzles. We require the sender to generate
a puzzle of a pre-set difficulty such that it can be solved in roughly the time it takes to finalize a
block, and we require the next block producer to compute it. We use a VDF construction to provide
verifiability.

To abstract and formalize those approaches, we say that the timed release component implements

16

a protocol with four routines: Setup(1*) — (pp, sp) which generates the public parameters and secret
parameters — really a DKG procedure in the first two approaches and no operation in the VDF case;
Share(pp,a,n,ny) — (k,e) used by the transactor to generate an encryption key k along with its
encapsulation e needed for timed release to decrypt it, given their account address a, the nonce n,
and the target block number ny; Reveal(sp, a, n, ny, e) — r, which allows the SMC (or anybody in the
VDF case) to decapsulate an encryption key, and Recover(pp, a, n, ny, e,r) — k, which allows anybody
to recover the same encryption key, or find out that the r is incorrect.

The important properties we should have in this formalism are key agreement: given a secret from
Share, running Reveal and Recover on the encapsulation should yield the same secret; robustness:
Recover should fail for invalid r arguments, and context binding: Recover should either fail or output
an unrelated key if a or n are changed.

3.3 Symmetric Encryption

We should now explain how transactions are temporarily protected. Importantly, the usual definition
of encryption does not provide the binding property of commitments. As a result, taking an existing
ciphertext and using a different key will often decrypt fine, albeit likely to a garbage plaintext. More
importantly, it is often possible to “maul” a ciphertext and obtain a valid ciphertext which corresponds
to a different plaintext. In [Zha+24, §2.1], Zhang et al. describe such an attack where, in the case of
an auction, a user looks at the encrypted bid of another user and constructs their own bid by blindly
adding 1 unit to the original bid. This is something that we want to prevent.

Still, our encryption needs to be binding even in the presence of a malicious sender. Key-
commitment [Gue20] really captures this property, specifying that it should be unfeasible to find a
ciphertext that can be validly decrypted under two different keys. Len, Grubbs, and Ristenpart pro-
vide concrete examples of such attacks against AES-GCM and ChaChazo-Poly1305 in [LGR20]. Thus,
we should use a symmetric primitive that satisfies Committing Authenticated Encryption (CAE).

A higher-level attack could also occur where a participant simply copies a commitment from
another and submits it unmodified as their own transaction. In the randomness generation case,
assuming XOR is used for mixing, this could allow canceling out another participant’s contribution.
More generally, this violates the fairness property because a participant has submitted a contribution
identical to another’s without it having been disclosed. To solve this, we should enforce context
binding in the higher-level protocol, making it possible to check that a ciphertext-commitment was
intended in a given transaction.

Finally, we require verifiability of the decryption process: when given the decrypted form of the
transaction, a node should be able to verify that there exists an encrypted transaction that decrypts
to it. This is to ensure that when a block producer introduces decrypted transactions in the block,

17

we can quickly verify that they are correct, just like we can verify that all transactions are signed
correctly.

Overall, we combine a CAE primitive with a timed release primitive to obtain the end-to-end
scheme. We will benchmark and evaluate multiple CAE primitives.

18

Chapter 4

Implementation

Our prototype of Dawn is based on go-ethereum, an implementation of Ethereum, and on prior work
by Wang, who implemented front running protection for Ethereum. [Wan23] It is architectured as a
potential update to Ethereum, named the Lausanne Hard Fork, such that an already existing chain can
switch to it at a given block. We are thus able to add new transaction types with new functionality,
and change the execution environment or any other aspect of the system. We should note that our
prototype uses Clique as a consensus protocol, which is not used in production by Ethereum. [EIP-

225]

Before the Lausanne Hard Fork, the block producer of block n was free to fill block n with any
sequence of valid transactions, so long as the gas consumed did not exceed the block limit. The
Hard Fork removes this ability from the block producer. Instead, block n must include exactly the
transactions from a new structure called the shadow block, which was included in block n — d by
another block producer. d is the execution delay parameter, which should be set so that a block which
has d-length chain leading to it assured to be in the canonical chain, modulo security assumptions.

Unlike the normal block body, the shadow block can contain encrypted transactions. As soon
as it does, it is no longer possible to accurately predict the future state of the blockchain because
those transactions cannot be simulated. As a result, we specify that the cumulative gas reserved by
transactions in the shadow block must not exceed the block gas limit. This value upper bounds the
eventual gas consumption of the block, which cannot be computed in advance, but the difference can
be arbitrarily big.

To ensure that the transactions in the shadow block can actually be included in the block, any
sequence of transactions from the same address in shadow blocks should have consecutive nonce,
and the first such transaction should match the nonce in the blockchain state at the same block. One
way to implement this constraint is to maintain a “shadow nonce” for each active address which can
be ahead of the regular nonce. The real nonce will be incremented as transactions are executed, and

19

transactions are stored in regular blocks, so it is not necessary to retain shadow blocks indefinitely.
Ether balance requirements must also be checked.

The priority fee for the transaction goes to the proposer of block n — d. This incentivizes them
to fill the shadow block. However, they should receive a fee proportional to the amount of gas
reserved instead of consumed. Otherwise, this allows anyone with Ether to submit an encrypted
transaction with a very high gas limit that does nothing when decrypted, thereby giving much less
than advertised to the proposer, unexpectedly.

The base fee is more interesting: since it is either burned or refunded, the only incentive is with
the sender of the transaction. We believe that the mechanism doesn’t need to be changed: we can
refund both the unused gas and the difference between the bid and the base fee. However, the base
fee value can change over d blocks, which means that some committed transactions may no longer
be executable. We chose to disable the base fee for the sake of the prototype, but a redesign of the
feature should be the subject of future research.

4.1 Data Structures

To represent encryptable transactions, we introduce three new types of transactions to the Ethereum
execution environment. We have described existing transactions in Section 2.7. Compared to those,
encrypted transactions lack to and data and contain the following new fields.

ciphertext the encryption of to and data;
tag an authentication tag for the ciphertext;
enc_key the encapsulated encryption key;

target_block a block number, only used in the TIBE case.

In addition, the message signed in v, r, s is adapted to include the new fields.

Encrypted transactions cannot be executed and thus can only be included in the shadow block.
Decryption outputs decrypted transactions that do not contain ciphertext and tag, but instead to
and data in plaintext like normal transactions. They retain enc_key and target_block, and add the
reveal field which contains the secret used to decapsulate the decryption key. Because the sender
signs the transaction in encrypted form, checking the signature on a decrypted transaction requires
re-encrypting the transaction to recover the ciphertext and tag and build the signature payload.
Deriving the decryption key requires the sender’s address in the general case, so we also add the
from field to provide the address of the sender.

20

Finally, to handle the case where the ciphertext is invalid, we can put on chain an undecrypted
transaction with the fields of the encrypted transaction and reveal. This avoids DoS attacks with
undecryptable transactions by penalizing the sender with gas costs.

4.2 Secret Management Committee

Building on [Bet23], our SMC is a group of n > 3 DEDIS Ledger Architecture (Dela) instances man-
aging a BN254 BLS key pair with a threshold of t = |n] + 1. This allows us to implement both the
TIBE and TPKE schemes.

To process a decrypted transaction when executing a block, it is necessary to compute the shared
secret k = e(o,U) where o is the decryption key supplied by the SMC, e is the bilinear pairing
operation, and U is the encapsulated key. It is also necessary to check the following equation to
ensure o is valid, where mpk is the SMC key and L is the identity label.

e(o, g2) = e(H; (L), mpk) (4-1)

The algorithm we use to compute pairings consists of two main steps: the Miller loop and the
final exponentiation. Scott[Scoos, §4.3] shows that when computing products of pairings, the Miller
loop must be performed for each pairing, but the final exponentiation can be performed only once.
This is also encouraged in [EIP-197] and [EIP-2537] by making the gas cost of products of pairings
an affine function. Thus, re-arranging our formulas to compute products of pairings may allow us
to amortize the final exponentiation.

We expect that the pairing operation will dominate the cost, so we optimize by changing (4.1) to
take advantage of pairing checks as follows. This should be less expensive than doing two complete
pairings.

e(o, g2) - e(H (L), —1- mpk) = gr (4.2)

4.3 Time-Lock Puzzles

To build a time-lock puzzle, we use repeated squaring in a 4096-bit RSA group. The sender generates
the group, so they know its multiplicative order and are able to shortcut the computation. Then, the
block producer has to spend sequential time computing the squarings. To ensure verifiability, We
can succinctly prove that the result of a squaring is correct using a public-coin argument described
in [Wes18, §4].

232768

Our parameter is iterations, such that it takes 0.4s to compute the function on our experi-

21

ments machine and 0.75s to compute the function with a proof. Clearly, this would not be sufficient
in a real world scenario, but due to practical constraints we had to settle for this.

4.4 Application

To understand how our system responds in a realistic scenario, we perform a sealed-bid first price
auction for a single item using an Ethereum smart contract. First we evaluate a version using hash-
based commit-and-reveal and overcollateralization as a baseline. Then, we modify our contract to
take advantage of delayed execution.

In the pre-Lausanne version, the auctioneer starts the auction by locking the item in the contract.
Then, there is a commit phase where bidders can commit to their bids with a hash while locking
collateral, which is an amount of cryptocurrency equal to the max_bid parameter. The commitment
is a hash of the bid amount, the sender’s address, and a random blinding factor. Then, a reveal phase
runs where the bidders reveal the preimage for the hash. As the reveals are processed, the contract
refunds either the full collateral if the bid has already been beaten, or the difference to the collateral
amount. In that case it also refunds the previous bidder. Finally, after the deadline for the reveal
phase, the auction can settle and transfer the item to the winner.

In the delayed execution version, we replace the commit phase and the reveal phase with a single
phase, which must not be longer than the execution delay. This ensures that the bidding is already
closed as the first transactions start executing. In that phase, bidders submit a single transaction that
offers their bid amount. The contract reacts similarly to the reveal phase, either accepting the bid
and refunding the previous bidder, or rejecting it.

One can use Ether directly as a currency on Ethereum using the value field of transactions.
However, it is not encrypted in our design, defeating the purpose of sealed-bid auctions. Instead,
we bid using an ERC-20 token, which is a widely used representation for fungible token on the
EVM. [EIP-20]

We test and deploy the application using the Foundry toolchain[Kon22] and the Solidity lan-
guage' which are widely used by smart contract developers. They do not need to be modified to
work on a Dawn chain.

‘https://soliditylang.org/

22

https://soliditylang.org/

Chapter 5

Evaluation

As reported by git, our modifications to go-ethereum itself amount to 1’325 inserted lines and 218
line deletions. The codebase comprises over 550’000 lines of code according to cloc' meaning that
our changes are modest. This does not include the cryptographic primitives we have implemented,
or the 4’000 lines of code for the SMC nodes.

Our contract for Dawn-powered auctions is 27% shorter by bytes than our contract using the
traditional method. Less code means less surface for bugs to appear, so we argue that Dawn makes
smart contract development safer for our motivating applications.

5.1 Gas Pricing

As a first step to evaluate and refine our design, we want to learn how expensive the decryption and
verification operations that every node following the chain must perform are. For that, we try to
follow the existing gas system in Ethereum closely.

In [EIP-1108], Cardozo and Williamson use the metric that one microsecond of computation
should cost at least 25.86 gas, based on their benchmark of an already priced operation. In [EIP-
2537], Vlasov et al. use 30M gas per second, so 30 gas per microsecond. No rationale is given. Both
could be equally valid choices given different hardware and software assumptions. This can also vary
over time.

We performed our benchmarks on a Raspberry Pi 4B with 8 gigabytes of RAM, running NixOS
Linux 23.11. This is intended to reflect the intent of the Ethereum community to support running
nodes on low-end machines such as cheap single-board computers, in order to lower the barrier of en-

‘https://github.com/AlDanial/cloc version 2.00

23

https://github.com/AlDanial/cloc

Machine time pus/op gas cost (gas) throughput (mgas/s)

Raspberry Pi 4B 293.862 3000 10.20
Reference 116 3000 25.86

Table 5.1: Calibration benchmark using BenchmarkPrecompiledEcrecover

try to run a node. To compare our setup to the EIP-1108 benchmark, we first reproduce the reference
benchmark which is available in the go-ethereum codebase as BenchmarkPrecompiledEcrecover.

The result is presented in Table 5.1. We can therefore stick with the methodology of EIP-1108 by
enforcing that a microsecond of computation on our machine should cost at least 10.2 gas units to
try to maintain consistency.

The schemes we consider are

ChaCha20-HMAC-SHA256 the ChaChazo stream cipher paired with HMAC for committing au-
thentication.

AES-CTR-HMAC-SHA256 the AES256 cipher in counter mode, similarly paired with HMAC.

RK-ChaChazo-Poly1305 the authenticated encryption scheme ChaChazo-Poly1305, modified fol-
lowing Gueron[Gue20] to ensure commitment.

RK-AES-GCM the authenticated encryption scheme AES-GCM, similarly modified.

First, we pit the selected algorithms against each other. In figure 5.1, we first note that the RK
variants are twice as fast on large messages as the HMAC variants. We also note that RK-ChaCha2o-
Poly1305 has the lowest start-up overhead and per-byte computation cost on the Raspberry Pi plat-
form.

Then, we investigate round reduction. In [Aumig], Aumasson argues that when standardizing
symmetric primitives such as hash functions and ciphers, the number of rounds is chosen very con-
servatively, and that one could confidently reduce this number later on. Concretely, he suggests that
ChaCha with 8 rounds is secure and 2.5 times faster than ChaChazo. To investigate this, we run
ChaCha unauthenticated with 3 different round settings. We present the results in Figure 5.2. We
see that, for our largest payloads, round reduction provides an appreciable speedup, going from 16
milliseconds to 12 (ChaChai2) and 10 (ChaCha8) for a 2 megabyte message. The efficiency gain is
most likely lesser when authentication is added back. In the best case scenario, there is a reduction
of 25% and 37.5% respectively in the computation time.

For informational purposes, we quantify the cost of key-commitment by benchmarking authen-
ticated but non-committing versions of our chosen algorithms in Figure 5.3. We find no discernible

24

. 107"} []5 AES-CTR-HMAC-SHA256 —
2 (0o RK-AES-GCM 1]
£ 102} |I0ChaChaz20-HMAC-SHA256 -
g* - |IB RK-ChaChazo-Poly1305]
gg 1073 ?
“ i
§ 1074} HH

10_5 ﬂ’_‘ﬂ- Hﬂ’_‘- H. T TTTT]

10! 102 10° 10* 10° 10°

length of plaintext

- 00 AES-CTR-HMAC-SHA256

2

>

~

=~ —

& 1070} lo RK-AES-GCM £

B i 10 ChaChazo-HMAC-SHA256 | |

s I — I8 RK-ChaChazo-Poly1305 | |

= —

g 1077} E

S i]

[H B

o H i

3 10-8 |l |

[10 H ' H H |

o H

§ :H\ TTTT] TTTT] T TTTT] T \-HH\ T \-HH\ T \E
10! 102 10° 10* 10° 10°

length of plaintext

Figure 5.1: gas benchmarks for candidate algorithms

difference. Since non-malicious transactions can be stored in decrypted form, there is also no long-
term storage cost, meaning that the mitigation is effectively free.

After evaluation, we choose to retain RK-ChaChazo-Poly1305 as our CAE scheme since it per-
forms the best out of the candidates we selected. Round reduction could deliver a small performance
improvement, at the cost of a less standard scheme, some engineering time, and some controversy.
We leave it as an exercise for future researchers. We note that this decision is based on regular CPUs.
Should Ethereum decide to optimize for ZK proof systems in the future as suggested in [EIP-7667],
other algorithms should be considered.

In the TPKE and TIBE modes, verification requires some elliptic curve pairing operations. In
Section 4.2 we hypothesized that the run times of those routines would be dominated by the Miller
loop (M) and the final exponentiation (F), and we described our optimization to avoid one F. This
would mean that RecoverSecret is M+F, the slow Verifyldentity is 2M+2F, and the fast Verifyldentity

25

seconds of computation

seconds of computation per byte

1072

1073

1074

0 ChaChazo
0ChaCha12
0 ChaCha8

mem mmm BEC

10! 10 103 104 10° 10°

length of plaintext
[Lol | Lol | Lol [N
[0 ChaChazo |
B 0 ChaChaiz ||
i [0 ChaChas ||

HHH Hﬂﬂ ﬂﬂﬂ sl

102

—_
S
[

Figure 5.2: gas benchmarks for round reduction

length of plalntext

26

108

seconds of computation

seconds of computation

seconds of computation per byte

1071

1072

1074

107

107

1077

| I Lo
0o RK-AES-GCM

- |lo AES-GCM o
8 DDRK-ChaChazo-Poly1305 o
| I8 ChaChazo-Poly1305
’_‘“’_H_‘“HH“ T T T IR
10 102 103 10 10° 106
length of plaintext

[Lol | Lol Lol Lol [
T 00 RK-AES-GCM

On AES-GCM

lDRK-ChaChazo-Poly1305
([} ChaChazo-Poly1305

:H\ TTTT] TTTT] T 1 TTTT] \’_\|'HH\ \’_\|‘-HH\
10 10 103 10* 10° 10°
length of plaintext
Figure 5.3: gas benchmarks for key commitment
1072
1.5 [I T |
- e - Miller loop d
- m - Final exponentiation
-o- error
1| - .
05] M
| | |
RecoverSecret Verifyldentity[Fast] Verifyldentity[Slow]
operation

Figure 5.4: benchmarks for gas-relevant IBE algorithms

27

1073

5 6| - N -]
2 - _
= _
-— —
5 —
3
s 4 |
(]
G
5]
3
g 20 .
S}
Q
]
i H
0

! ! ! ! ! ! ! ! ! !
25 210 215 220 225 230 235 240.01 245.01 250.01

delay parameter

Figure 5.5: benchmarks for VDF proof verification

is 2M +F. In Figure 5.4, we benchmark both routines. This gives us F = 4368.787 and M =~ 2670.824us
with a maximum error of 1.26%, which is consistent with our hypothesis.

We can convert these values to gas: F = 44562 and M = 27242. The costs in EIP-1108 are
F = 45000 and M = 34000. The former is spot on, but the latter is cheaper in our implementation
by 20%. Again in EIP-1108, Parity is referred to as “the less performant client”, which implies that
go-ethereum’s implementation is more performant. We use Cloudflare’s BN254 library, and so does

go-ethereum. This explain our observations very well.

We decided to align with the existing practice when pricing these elliptic curve operations. Thus,
we charge 3M + 2F = 192000gas per transaction. Alternatively, we could have picked M = 28000 to
reflect performance in Go and charge 3M + 2F = 174000gas.

Finally, we benchmark VDF verification and output recovery in figure 5.5. We find that the
runtimes oscillate for an unknown reason, but are broadly consistent with the idea that the operation
is constant time in its worst case. The highest value we record is 6474us, which suggest a gas cost of

66’000 for the operation.

Overall, an encrypted transaction should clearly cost more gas. Increasing the intrinsic gas, which
always charged to every transaction to cover validation and long-term storage, by 192’000, or 66’000
in the time-lock puzzle case, would conservatively account for the key decapsulation and verification.
The cost of RK-ChaChazo0-Poly1305 of 220 gas units plus 0.144 gas units per byte could be added to
that, but we opt not to since it is negligible relative to the rest of the cost, suggesting to us that it is
not a likely DoS vector.

The impact on the fee paid by transactors can be calculated like so: assume a gas price of 10

28

Scheme target_block enc_key reveal from total cost

TPKE) 128 64 20 212 $0.119
TIBE gt 128 64 20 220 $0.123
VDF 0 256 544 20 820 $0.459

T: assuming 64-bit representation, actual encoding may be more efficient.

Table 5.2: Sizes of additional fields in bytes

gwei (1 gwei = 10~ Ether) and an Ether price of 3’500 USD. Multiply with 192’000 or 66’000 gas to
obtain $6.72 or $2.31. For a big trader at risk of losing thousands to front running, this would likely
be a no-brainer. However, for auctions and other use cases, it must be multiplied by the number of
participants. Especially in the case of small value auctions and non-financial use cases, this may be
prohibitive.

In Table 5.3, we use data about a typical swap transaction in an existing decentralized exchange
application, and find that if Dawn was deployed on Ethereum, the additional gas cost of front running
protection would be 35% with SMC and 15% with VDF.

We should note that, due to the high costs of computation on Ethereum, so-called layer-2 solu-
tions exist to move computation off of the main chain. In particular many rollups are being used in
production. A rollup removes the need to execute the transaction logic on the main chain but still
posts data back to the main chain[TSH22]. For instance, one way to build a rollup is to use a ZK
proof that the computation was performed correctly. As a result, computation costs are reduced, but
data costs can remain high. This means that the additional witness data produced by our scheme also
needs to be evaluated.

We present the lengths of the new fields in Table 5.2. By this metric, the most efficient protocol is
TPKE, closely followed by TIBE. However, since the reveal field of TIBE is the same for transactions
with the same target block, optimisations could be applied although the table still presents the worst
case. Due to the size of RSA group elements, the time-lock scheme is nearly four times as expensive.
To estimate the costs, we use the rule that, on Ethereum, one nonzero byte of data costs 16 gas®, again
with 10 gwei and $3°500 Ether. Overall, these costs are much lower than the computation costs, but
may irritate some layer-two users if the computation costs are small in comparison.

5.2 Throughput

For a given level of throughput to be sustainable on a Dawn chain, two conditions must be satisfied:
the block producers must be able to receive all the decryption keys in time, and the gas consumption

*There exists an alternative way to publish data on Ethereum, known as blobs, which may be cheaper .[EIP-4844]

29

30| |lDVDF o
losmc

20 - 5

10 | 1

0 == P l_|‘ ’_|‘ |_|,—1D;—1Hﬁ|_‘m ﬂ
4 25 26 27 8

20 ol 22 23 2

latency (seconds)

I
29 210 211

batch size

Figure 5.6: Batch Decryption Latency

must stay within the predefined limit.

To address the first condition, we measure in Table 5.6 how quickly our schemes can decrypt
every transaction in a batch. We use a 40-core KVM virtual machine with 32GB of RAM running
Debian GNU/Linux provided by the DEDIS laboratory. Since blocks on Ethereum come every 12
seconds, we chose 10 seconds as a conservative threshold. Accordingly, the VDF scheme can process
up to 512 transactions per block and the SMC schemes up to 2’048. This corresponds to 42 and 170
transactions per second, respectively.

To determine how many bids the gas limit allows, we will look at the gas units consumed by
transactions in our prototype. In Table 5.3, we collect the highest amount of gas that can be consumed
during a given action, and analyse which components are responsible for it. The “base” item is the
original intrinsic gas. “smc” and “vdf” cover verifiable decryption as per the previous section. Since
different code paths can incur different costs, we distinguish the case where a bid is the new highest
bid and so funds have to be transferred to and from the auction, and the case where it is not and the
operation is less expensive.

When using overcollateralized auctions, a commit and a reveal transaction together amount to
either 134’443 or 150’814 gas, which is thus amount of gas per bidder. In the worst case scenario, bids
are processed in ascending order and each consume the higher amount. In the best case scenario,
they are processed in descending order and consume the lower amount.

When using Dawn, the bidder makes a single transaction. When the CG fill the shadow block,
they do not know if the bid will execute as the current highest or not, hence they reserve the higher
amount. Still, in the VDF case, the higher gas expense is closer to the lower end of the range for a
pair of overcollateralized auction transactions. However, in the SMC case, the higher expense is 75%
to 96% higher than baseline. This means that in the current state, the TIBE and TPKE variants will

30

Routine Gas cost

Commit bid base + 46200 67200
Reveal bid base + 46243 67243
Reveal highest bid base + 62614 83614
Bid (SMC) base + smc + 11487 224487
Bid highest (SMC) base + smc + 50537 263537
Bid (VDF) base + vdf + 11487 98487
Bid highest (VDF) base + vdf + 50537 137537
Swap base + 335190 356190
Swap (SMC)* base + smc + 335190 548190
Swap (VDF)* base + vdf + 335190 422190

base = 21000 smc = 192000 vdf = 66000
T: data according to [Eth24c] ¥: extrapolated

Table 5.3: Gas cost breakdown for typical transactions

exhibit at best half the throughput as the baseline, but the VDF variant could be roughly equal. It is
important to note that those results are mainly determined by the gas pricing that we established in
the previous section, meaning that any change of policy there will greatly influence them.

Putting this together, at 2’500’°000 gas per second, we are limited to 18 and 9 bids per second
respectively. This is the bottleneck since decryption can easily keep up.

5.3 Observations

When running under delayed execution, Operations such as deploying the contracts or preparing
funds for the auction take more time. Unsurprisingly, the program has to wait for confirmation
that the transaction executed as expected, which means waiting for inclusion and then waiting for
the block delay. This does not affect actions that can be performed in parallel or optimistically in
sequence, except for the final latency.

As previously stated, the TIBE scheme introduces a rule that a transaction cannot be included if
its target block is too old. This is important so that nodes do not need to store old decryption keys
indefinitely, but has the side effect of creating time-limited transactions. When using the auction
application, we set the target block for bids to be the block where the auction opens. That way, a
bid is either included on time, or it expires. This is advantageous because if it were included, the
transaction would revert anyways. Moreover, it seems to us that for other use cases, this is not such

31

a bad outcome: late votes and randomness contributions will most likely be discarded. Trades are
more nuanced: the trade will not be able to be front run, but the user’s intent will still be revealed.
For that reason, this use case will likely prefer TPKE-style guarantees.

We found that, under normal circumstances, a go-ethereum node, even without participating in
consensus, will try to construct a potential next block locally. This is useful for gas estimation, and
more generally for speculative execution. Delayed execution disrupts this process however. Addi-
tionally, we had to manually set gas limits when sending the bid transactions because the simulation
would respond with an error because the auction had not opened yet in the simulated state, even
though it would be open by the time the transaction is executed.

32

Chapter 6

Related Work

In [Qu23], Qu designs and implement a threshold decryption scheme for use with The threshold
decryption scheme is based on [SGoz2], which does not rely on pairings and can thus use the Ed25519
curve. Qu also discusses a variation that enables the sender to construct their own SMC, but we will

refer to his paper.

Qu also proposes to implement verifiability despite the lack of pairings in a clever way: the sender
is required to include a hash of the symmetric key. In the honest scenario, the key can be provided
when executing the transaction. In case the sender is dishonest, they can be slashed by posting
the whole decryption proof. We believe that there is a weakness in this construction in that, with
the complicity of a block producer, a sender can craft a transaction where the hashed key doesn’t
match the encapsulated key, an obtain the capacity to a posteriori cancel their transaction: they
can reveal the preimage and the transaction will decrypt and execute correctly, or they can let the
decryption proof be posted, making the transaction invalid. In private correspondence, Qu noted
that the misbehavior would still be detectable by using the decryption shares, and suggested that
further study would be needed to reach a conclusion. We concur.

Looking more closely at the decryption step in the threshold scheme, we see that it computes
mpk’ given (among other things) u = g”. A succinct proof of validity would be a Schnorr discrete
logarithm equality proof log,(u) = logmpk(mpkr). It might be possible to produce such a proof with
a protocol similar to FROST[KGz2o0], albeit after multiple rounds of communication within the SMC.
This is an avenue for future research. We note that this protocol would also be a threshold version
of ECVRF. [RFC93381]

Another difference between our work and Qu’s is context binding: Qu did not consider auctions
and protocols with multiple participants and thus did not involve the sender address and nonce in
the encryption and decryption routines. Thankfully, we believe this can be addressed with a minor
modification.

33

Finally, we differ in the way we penalize a malicious sender: we chose to turn a malformed trans-
action into a no-operation transaction at the expense of the sender using the existing gas mechanic.
This integrates more directly into the existing architecture and does not require an additional de-
posit. However, if this mechanic turns out to be impractical, Qu’s can still be used. Overall, the
scheme provides similar guarantees to our TPKE scheme.

Shutter Network is working on a real-world deployment of front-running protection. Shutter
does not introduce new transaction types like we do, instead choosing to encrypt normal transactions
entirely and publishing them to a contract using another transaction. This has the advantage of
not requiring a hard fork, in fact, since a subset of the CG nodes can opt-in to relay decrypted
transactions, it is really a soft fork. [KS24]

On rollups, Shutter can instead submit transactions to a third-party termed the collator, who will
commit to their order and obtain the decryption key from the SMC.[Shu22] This shows that Shutter
is more similar to our TIBE scheme, with batches as the identity labels.

Based on code inspection, it seems like in Shutter, SMC members communicate using a spe-
cialized blockchain using the Tendermint[BKM19] consensus algorithm. Contracts on the main
blockchain will trust that the majority of SMC nodes is honest when receiving signed messages from
that chain.

Still based on code inspection, the encryption scheme of shutter is interesting because it imple-
ments key commitment and authentication in a different way than our solution.

Enc(msg, mpk, label):
sigma := get_random_bytes(32)
r := hash(sigma || msg)
Cl := 1 * G2
C2 := sigma xor hash_point(r * e(hash_to_gl(label), mpk))
C3 := symmetric_encrypt(sigma, msg)
return (C1, C2, C3)

This means that, upon release of the decryption for the label, parties are able to recover sigma, which
is the symmetric key, from C1 and C2, then recompute r to check consistency of the key and plaintext.
We note that, since the label is the epoch number, this scheme does not perform context binding, but
since the ciphertext is a signed transaction, this does not lead to a vulnerability.

Finally, Shutter provides a production-ready SMC setup, something that is very valuable and
was not studied in this work. The important difference is that we choose to enforce that correct
decryption is verified on-chain and not just by the consensus group, and generalize the approach for
multiple participants.

34

In [Cho+24], Choudhuri et al. comment on Shutter’s scheme among others, and suggest a batched
TPKE scheme that can decrypt multiple transactions with the same communication costs as one. It
combines the flexibility of our TPKE scheme with the efficiency of our TIBE scheme, albeit at the cost
of setup assumptions, and thus appears to be a significant breakthrough.

In [Sta+21], Stathakopoulou et al. use Trusted Execution Environments (TEE) to implement front
running protection. TEE are hardware-based solutions that allow a program to run in an untrusted
environment and produce a signed attestation of the process. TEE require trust in the hardware
manufacturer. A TEE-based setup can replace a decentralized SMC and potentially perform process-
ing more complex than just decryption. We note that the paper features a more formal definition
of a front running attack, which is equivalent to our privacy guarantee, and also guarantees sender
obfuscation, meaning the sender of a transaction is private before the transaction is ordered, which
we do not provide.

In [EIP-7547] Neuder et al. present a mechanism for block producers to force subsequent produc-
ers to include certain transactions. The idea is that, since Ethereum producers often delegate block
building to a few specialized entities for monetary reasons, those specialized entities have too much
control over the network, potentially calling into question its decentralization. In particular, block
builders have the power to censor transactions arbitrarily. To mitigate this risk, an upgrade could
allow the block proposer of block n to select a few transactions and enforce that they are included in
block n + 1 at the latest.

Inclusion lists are interestingly similar to our shadow blocks. They are lists of transaction that
constrain future block producers. However, unlike inclusion list, shadow blocks need to wait for
finality. In principle, transactions on inclusion lists could be encrypted, but this is not a design goal.
If that were the case, they would need to enforce some ordering guarantees to prevent front running.
Inclusion lists do not replace the existing block building mechanism, but instead complement it. As
a result, they don’t prevent MEV extraction like we do, which is not their goal.

Neuder et al. also work more closely with Ethereum as it exists in the field, addressing concrete
data structures, interoperability with block builder software, data retention, interaction with EIP-
1559, and enforcement of consensus rules. These are useful solutions to problems that were not
addressed in this work.

Cicada[Gla+23] uses homomorphic time-lock puzzles to implement sealed-bid auctions and vot-
ing. It differs from our solution in that, instead of decrypting each participant’s contribution on its
own and executing it on chain, it can allow an off-chain actor to perform the application logic on the
encrypted inputs without solving the puzzle, then solve a puzzle that directly produces the output.
The process can then be verified on-chain.

Compared to Dawn with VDF, Cicada reduces the amount of puzzles that must be solved to one
instead of n, thereby saving a substantial amount of electricity. It can also be implemented on top of

35

any Ethereum-compatible chain instead of requiring an upgrade. We note that it currently requires
sigma protocols to be designed by hand for each program, and that the lowest gas cost per voter is
reportedly 418’358, which is substantially more than the cost of a bid in our experiment even in the
worst case. However, further development could both deliver a generalized execution environment
and bring costs down. We suggest it may make sense to integrate some of the proof schemes into
the underlying execution environment (likely a rollup) to avoid the overhead inherent in an EVM

implementation.

In [DGM23], Dujmovic, Garg, and Malavolta provide a construction for time-lock puzzles that
support batch-solving, meaning multiple puzzles using the same parameters can be solved as effi-
ciently as a single one. If applied to our VDF scheme, given a set of puzzle parameters for each
block, senders could pick a target block using the same logic as in the TIBE variant and the CG
could solve one puzzle per block. The drawback is that, to our knowledge, setting up this scheme
requires a trusted setup phase — specifically a RSA group where the private parameters are used and
erased[MT19], which may be hard to do in a decentralized setting.

6.1 Final Considerations

Thanks to our design choice with regards to decrypted transactions, we can store and transmit regular
blocks in plaintext form. Currently, the size of plaintext Ethereum blocks can be reduced three- to
fivefold with compression. [EIP-706] Losing this property by storing transactions in encrypted form
would likely have a practical impact. As long as shadow blocks are discarded after some time, just
like inclusion lists would be, Dawn should not adversely impact performance in this area.

In our design, we decide that all transactions would be subject to delayed execution. This is a
simple way to prevent front running even if a committed transaction is decrypted a bit early, but it
forces even applications that do not benefit from Dawn to undergo the execution delay before know-
ing what will be in the EVM state when they are executed. One could counter that that knowledge
is not final, but many applications may make stronger assumptions about the likelihood of a block
being reorged than us. As a result, one could allow a fast path where unencrypted transactions can
be executed directly in the block after the shadow block has been exhausted. This also avoids wast-
ing the gas reserved but not used by the shadow block and partially restores the ability to extract
MEV. However, it makes it more complex for commit-and-reveal applications to enforce the delay,
especially in case participants try to cancel their own bids by changing some external conditions, e.g.
moving their tokens.

A different approach to avoid wasting reserved gas would be to require the block producer to
include as many consecutive shadow block transactions as will fit. This may also help restoring EIP-
1559 functionality by giving better feedback, albeit with a delay. For this reason and to decrease
end-user latency, faster finality on Ethereum would benefit Dawn.

36

We propose to allow transactions to access their decryption key from the EVM. This would allow
contracts to enforce that only delayed transactions may touch a given piece of state. It would also
serve, in the TPKE case as a per-transaction source of randomness that even the sender cannot
predict, since the verifiable decryption key is unique. This is also true in the TIBE case but it is
shared with other transactions with the same target block.

An issue that we did not address in this work is how the SMC node operators should be incen-
tivized. Clearly they must be compensated in some way since they dedicate resources to the activity
for the benefit of the blockchain system. Whether issuing tokens or awarding them a cut of gas fees
is more desirable is up to the implementers.

We do not achieve sender obfuscation in Dawn: the address of the sender is known from the
encrypted transaction. A possible way to remediate this, along with hiding fields such as the gas
limit, is to encrypt these fields and submit a zero-knowledge proof that the transaction is valid.
This requires showing that, in a recent blockchain state, the balance requirement is met and the
nonce matches. Allowing consecutive transactions from the same account is subtle however, since it
requires checking that the most recent pending balance is sufficient and that the nonce is consecutive.

Since its inception, Ethereum has sought to remove the special status that ECDSA secp256k1
key pairs possess in the protocol and instead allow accounts to be defined by EVM code. We should
explore if such a mechanism is compatible with Dawn. In our opinion, a proposal such as [EIP-7701]
could fit: the proposal makes it so that transaction validation is expressed as a call into the EVM.
The payload of this call could remain in plaintext, whereas the main call, which would be subject
to delayed execution, can be encrypted. To enable sender obfuscation, the validation contract itself
could require and verify a ZK proof.

Another obfuscation angle is balance obfuscation: with ERC-20 tokens, every user’s balance is
public. This could enable bidders to make guesses as to other bidders’ future moves. Dawn may
be combined with a confidential payments mechanism such as Zether[Biin+19]. Assume the user
can withdraw from Zether and use the funds to bid in a single transaction: then Zether protects the
balance prior to the auction, and Dawn prevents the bid from being read in-flight.

In the VDF scheme, the sender of the transaction is in a privileged position: they already know
the decryption key without needing to perform the slow computation and they can even generate a
proof. One may want to incentivize them to cooperate with the CG to reduce computational costs.
Wesolowski shows that proofs can be attributed to an identifier (“watermarked”) by including it in
the Fiat-Shamir input. [Wes18, §7.2] Thus, it can be shown whether the sender cooperated or not.
The exact incentive mechanism remains undetermined for now.

Although we pretended to upgrade Ethereum itself for the project, an upgrade such as the Lau-
sanne Hard Fork is unlikely to occur in the near future for a major reason: it adds an honest majority
assumption on the SMC, which in our estimation, the Ethereum community will not want. This may

37

be different in the case of rollups and other chains. Observe that the chain itself becomes depen-
dent on the SMC'’s availability: if transactions can no longer be decrypted, new blocks will not be
produced because we require them to include finalized encrypted transactions. Worse still: if the
SMC is malicious, it can choose which block producers are allowed to decrypt and cause the others
to be blamed for unavailability. We might imagine an automated process whereby validators can
bear witness that the SMC is unavailable and disable the functionality as an emergency measure, but
further research is needed to determine if this can be abused. This is less pronounced in the VDF

case, but it assumes all validators are able to perform the VDF computation efficiently enough.

We also note that reusing the CG to be the SMC may resolve both of the previously highlighted
issues. However, we reserve our judgement until more research is available.

38

Chapter 7

Conclusion

In this work, we described Dawn: a blockchain architecture that enables multiple users to provide
their input to a smart contract in a temporarily private way, and its prototype based on Ethereum. We
simulated realistic sealed bid auctions using this prototype, and discovered the trade-offs between
the TPKE, TIBE, and VDF methods: TPKE is most indicated for front running protection, while TIBE
is more suited for auctions and votes. VDF is much harder to put in production at this stage due to
the energy consumption and uncertainty about computational limits, but is computationally cheaper
to verify.

A Dawn chain has backwards compatibility with existing tooling, Under realistic conditions, the
price of the delayed execution and front running protection feature is reasonable for an average
blockchain user. We speculate that future developments or deployment on layer-twos may reduce
the cost even more.

Drawbacks of Dawn are the increased latency when observing transaction execution without
waiting for finality, the reduced throughput due to verification costs and block building inefficiencies,
and the disruption of helpful MEV. Compared with existing solutions, we eliminate long-term storage
of ciphertexts, remove the need for a separate fee payment mechanism, and explicitly target use cases

involving multiple users.

In this work, we provided a rigorous treatment of verifiable decryption, committing authenti-
cated encryption, and context binding. We also abstracted and formalized the concept of a commit-
and-reveal application. We also highlighted works related to batched threshold decryption, homo-
morphic time-lock puzzles, sender obfuscation, and time-lock puzzles with batch solving. We briefly
discuss interactions between delayed execution and ongoing developments in Ethereum such as ac-
count abstractions and inclusion lists. Finally, we highlighted future areas of inquiry such as more
MEV-friendly designs, more efficient block building, randomness provision, SMC and VDF incen-
tivization, sender and balance obfuscation, and account abstraction.

39

In 2022, John Wang wrote that “Since the execution/settlement layer is a highly competitive,
race-to-the-bottom of tight margins, the rollups with the best MEV mitigation mechanisms will have
an edge”. [Wan22] Stimulated by the competition taking place in the market, this field of study will
certainly remain active and foster fascinating research and exciting developments.

40

41

Bibliography

[Aumig]

[BBHo6]

[Ben+18]

[Bet23]

[BFo1]

[BKM19]

[Bon+18]

[Biin+19]

[But+20]

[Butiq]

Jean-Philippe Aumasson. Too Much Crypto. Cryptology ePrint Archive, Paper 2019/1492.
2019. URL: https://eprint.iacr.org/2019/1492.

Dan Boneh, Xavier Boyen, and Shai Halevi. Chosen Ciphertext Secure Public Key Thresh-
old Encryption Without Random Oracles. 2006. URL: https://crypto.stanford.
edu/~dabo/papers/ibethresh.pdf.

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transpar-
ent, and post-quantum secure computational integrity. Cryptology ePrint Archive, Paper
2018/046. 2018. URL: https://eprint.iacr.org/2018/046.

Julie Bettens. Optimizing Front-running Protection. 2023. URL: https://www.epfl.
ch/labs/dedis/wp-content/uploads/2024/06/Bettens2023_FrontRunni
ngProtection.pdf.

Dan Boneh and Matthew Franklin. Identity Based Encryption From the Weil Pairing. 2001.
URL: https://crypto.stanford.edu/~dabo/papers/bfibe.pdf.

Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus.
2019. arXiv: 1807.04938 [cs.DC].

Dan Boneh, Joseph Bonneau, Benedikt Biinz, and Ben Fisch. Verifiable Delay Functions.
Cryptology ePrint Archive, Paper 2018/601. 2018. URL: https://eprint.iacr.org/
2018/601.

Benedikt Biinz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards
Privacy in a Smart Contract World. Cryptology ePrint Archive, Paper 2019/191. 2019.
URL: https://eprint.iacr.org/2019/191.

Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao, Danny
Ryan, Juhyeok Sin, Ying Wang, and Yan X Zhang. Combining GHOST and Casper. 2020.
arXiv: 2003.03052 [cs.CR].

Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized Appli-
cation Platform. 2014. URL: https : / / ethereum. org/content /whitepaper/
whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf.

42

https://eprint.iacr.org/2019/1492
https://crypto.stanford.edu/~dabo/papers/ibethresh.pdf
https://crypto.stanford.edu/~dabo/papers/ibethresh.pdf
https://eprint.iacr.org/2018/046
https://www.epfl.ch/labs/dedis/wp-content/uploads/2024/06/Bettens2023_FrontRunningProtection.pdf
https://www.epfl.ch/labs/dedis/wp-content/uploads/2024/06/Bettens2023_FrontRunningProtection.pdf
https://www.epfl.ch/labs/dedis/wp-content/uploads/2024/06/Bettens2023_FrontRunningProtection.pdf
https://crypto.stanford.edu/~dabo/papers/bfibe.pdf
https://arxiv.org/abs/1807.04938
https://eprint.iacr.org/2018/601
https://eprint.iacr.org/2018/601
https://eprint.iacr.org/2019/191
https://arxiv.org/abs/2003.03052
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf

[Cho+24]

[Dai+19]

[DGM23]

[Edg23]

[EIP-1108]

[EIP-1559]

[EIP-197]

[EIP-20]

[EIP-225]

[EIP-2537]

[EIP-4844]

[EIP-706]

[EIP-7547]

[EIP-7667]

Arka Rai Choudhuri, Sanjam Garg, Julien Piet, and Guru-Vamsi Policharla. Mempool Pri-
vacy via Batched Threshold Encryption: Attacks and Defenses. Cryptology ePrint Archive,
Paper 2024/669. 2024. URL: https://eprint.iacr.org/2024/669.

Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash Boys 2.0: Frontrunning, Transaction Reordering, and
Consensus Instability in Decentralized Exchanges. 2019. arXiv: 1904.05234 [cs.CR].

Jesko Dujmovic, Rachit Garg, and Giulio Malavolta. Time-Lock Puzzles with Efficient
Batch Solving. Cryptology ePrint Archive, Paper 2023/1582. 2023. URL: https://epri
nt.iacr.org/2023/1582.

Ben Edgington. Upgrading Ethereum. Commit ebfcf50. 2023. URL: https://eth2boo
k.info/capella.

Antonio Salazar Cardozo and Zachary Williamson. EIP-1108: Reduce alt_bni128 precom-
pile gas costs. https://eips.ethereum.org/EIPS/eip- 1108. Ethereum Im-
provement Proposal. 2018.

Vitalik Buterin, Eric Conner, Rick Dudley, Matthew Slipper, Ian Norden, and Abdel-
hamid Bakhta. EIP-1559: Fee market change for ETH 1.0 chain. https://eips.ether
eum.org/EIPS/eip-1559. Ethereum Improvement Proposal. 2019.

Vitalik Buterin and Christian Reitwiessner. EIP-197: Precompiled contracts for optimal
ate pairing check on the elliptic curve alt_bni28 https://eips.ethereum.org/
EIPS/eip-197. Ethereum Improvement Proposal. 2017.

Fabian Vogelsteller and Vitalik Buterin. ERC-zo0: Token Standard. https : / / eips .
ethereum.org/EIPS/eip-20. Ethereum Improvement Proposal. 2015.

Péter Szilagyi. EIP-225: Clique proof-of-authority consensus protocol. https: //eips.
ethereum.org/EIPS/eip-225. Ethereum Improvement Proposal. 2017.

Alex Vlasov, Kelly Olson, Alex Stokes, and Antonio Sanso. EIP-2537: Precompile for
BLS12-381 curve operations. https : //eips . ethereum. org/EIPS/eip- 2537.
Ethereum Improvement Proposal. 2020.

Vitalik Buterin, Dankrad Feist, Diederik Loerakker, George Kadianakis, Matt Garnett,
Mofi Taiwo, and Ansgar Dietrichs. EIP-4844: Shard Blob Transactions. https://eips.
ethereum.org/EIPS/eip-4844. Ethereum Improvement Proposal. 2022.

Péter Szilagyi. EIP-706: DEVp2p snappy compression.https://eips.ethereum.org/
EIPS/eip-706. Ethereum Improvement Proposal. 2017.

Michael Neuder, Vitalik Buterin, Francesco Damato, Terence, Potuz, and Manav Darji.
EIP-7547: Inclusion lists. https://eips.ethereum.org/EIPS/eip-7547.Ethereum
Improvement Proposal. 2023.

Vitalik Buterin. EIP-7667: Raise gas costs of hash functions.https://eips.ethereum.
org/EIPS/eip-7667. Ethereum Improvement Proposal. 2024.

43

https://eprint.iacr.org/2024/669
https://arxiv.org/abs/1904.05234
https://eprint.iacr.org/2023/1582
https://eprint.iacr.org/2023/1582
https://eth2book.info/capella
https://eth2book.info/capella
https://eips.ethereum.org/EIPS/eip-1108
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-197
https://eips.ethereum.org/EIPS/eip-197
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-225
https://eips.ethereum.org/EIPS/eip-225
https://eips.ethereum.org/EIPS/eip-2537
https://eips.ethereum.org/EIPS/eip-4844
https://eips.ethereum.org/EIPS/eip-4844
https://eips.ethereum.org/EIPS/eip-706
https://eips.ethereum.org/EIPS/eip-706
https://eips.ethereum.org/EIPS/eip-7547
https://eips.ethereum.org/EIPS/eip-7667
https://eips.ethereum.org/EIPS/eip-7667

[EIP-7701]

[ENS22]

[Eth24a]

[Eth24b]

[Eth24c]

[Gla+23]

[Guezo]

[K22]

[KB21]

[KG20]

[Konz2]

[KS24]

[LGR20]

[May93]

Vitalik Buterin, Yoav Weiss, Alex Forshtat, Dror Tirosh, and Shahaf Nacson. EIP-7701:
Native Account Abstraction with EOF. https://eips.ethereum.org/EIPS/eip-
7701. Ethereum Improvement Proposal. 2024.

ENS. Controller — ENS Documentation. https://docs.ens.domains/contract-
api-reference/.eth-permanent-registrar/controller. 2022.

Ethereum.org Contributors. Blocks. Last updated February 27, 2024. 2024. URL: https:
//ethereum.org/en/developers/docs/blocks/.

Ethereum.org Contributors. The history of Ethereum. Last updated March 14, 2024. 2024.
URL: https://ethereum.org/en/history.

Etherscan.io. Ethereum Gas Tracker. 2024. URL: https://etherscan.io/gastrack
er (visited on 06/20/2024).

Noemi Glaeser, Istvin Andras Seres, Michael Zhu, and Joseph Bonneau. Cicada: A frame-
work for private non-interactive on-chain auctions and voting. Cryptology ePrint Archive,
Paper 2023/1473. 2023. URL: https://eprint.iacr.org/2023/1473.

Shay Gueron. Key Committing AEADs. Cryptology ePrint Archive, Paper 2020/1153.
2020. URL: https://eprint.iacr.org/2020/1153.

Tatu K. Shutter brings shielded voting to Snapshot. 2022. URL: https://blog.shutte
r.network/shutter-brings-shielded-voting-to-snapshot.

Georgios Konstantopoulos and Vitalik Buterin. Ethereum Reorgs After The Merge. 2021.
URL: https://www.paradigm.xyz/2021/07/ethereum-reorgs-after-the-
merge.

Chelsea Komlo and Ian Goldberg. FROST: Flexible Round-Optimized Schnorr Threshold
Signatures. Cryptology ePrint Archive, Paper 2020/852. 2020. URL: https://eprint.
iacr.org/2020/852.

Georgios Konstantopoulos. Announcing Foundry vo.2.0. 2022. URL: https : / / www .
paradigm.xyz/2022/03/foundry-02.

Tatu K. and Shutter Network. The First Shutterized Testnet Is Now Live on Chiado! 2024.
URL: https://blog.shutter.network/the-first-shutterized-testnet-
is-now-1live-on-chiado/.

Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning Oracle Attacks. Cryptology
ePrint Archive, Paper 2020/1491. 2020. URL: https://eprint.iacr.org/2020/
1491.

Timothy C. May. Timed-Release Crypto. 1993. URL: https://mailing-list-archi
ve.cryptoanarchy.wiki/archive/1993/02/a421c6fc805dfb4ae4197521e
8a9e91dd456e3deab855f12af31a4blccccfoeb.

44

https://eips.ethereum.org/EIPS/eip-7701
https://eips.ethereum.org/EIPS/eip-7701
https://docs.ens.domains/contract-api-reference/.eth-permanent-registrar/controller
https://docs.ens.domains/contract-api-reference/.eth-permanent-registrar/controller
https://ethereum.org/en/developers/docs/blocks/
https://ethereum.org/en/developers/docs/blocks/
https://ethereum.org/en/history
https://etherscan.io/gastracker
https://etherscan.io/gastracker
https://eprint.iacr.org/2023/1473
https://eprint.iacr.org/2020/1153
https://blog.shutter.network/shutter-brings-shielded-voting-to-snapshot
https://blog.shutter.network/shutter-brings-shielded-voting-to-snapshot
https://www.paradigm.xyz/2021/07/ethereum-reorgs-after-the-merge
https://www.paradigm.xyz/2021/07/ethereum-reorgs-after-the-merge
https://eprint.iacr.org/2020/852
https://eprint.iacr.org/2020/852
https://www.paradigm.xyz/2022/03/foundry-02
https://www.paradigm.xyz/2022/03/foundry-02
https://blog.shutter.network/the-first-shutterized-testnet-is-now-live-on-chiado/
https://blog.shutter.network/the-first-shutterized-testnet-is-now-live-on-chiado/
https://eprint.iacr.org/2020/1491
https://eprint.iacr.org/2020/1491
https://mailing-list-archive.cryptoanarchy.wiki/archive/1993/02/a421c6fc805dfb4ae4197521e8a9e91dd456e3deab855f12af31a4b1ccccf6cb
https://mailing-list-archive.cryptoanarchy.wiki/archive/1993/02/a421c6fc805dfb4ae4197521e8a9e91dd456e3deab855f12af31a4b1ccccf6cb
https://mailing-list-archive.cryptoanarchy.wiki/archive/1993/02/a421c6fc805dfb4ae4197521e8a9e91dd456e3deab855f12af31a4b1ccccf6cb

[MGZ22]

[MM22]

[MR24]

[MT19]

[Nako8]

[Qu23]

[ran17]

[RFC9381]

[RSW96]

[Scoos]

[SGoz]

[Shuz22]

[Sta+21]

Peyman Momeni, Sergey Gorbunov, and Bohan Zhang. FairBlock: Preventing Blockchain
Front-running with Minimal Overheads. Cryptology ePrint Archive, Paper 2022/1066.
2022. URL: https://eprint.iacr.org/2022/1066.

Luzius Meisser and Basile Maire. “Frankencoin.” In: (2022). URL: https://www.snb.
ch/dam/jcr:2cc1b322-39d7-45ea-a91c-b57dd1e43e43/sem_2022_06_03_

maire.n.pdf.

Ciamac C. Moallemi and Dan Robinson. Loss-Versus-Fair: Efficiency of Dutch Auctions
on Blockchains. 2024. arXiv: 2406.00113 [q-fin.TR].

Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic Time-Lock Puz-
zles and Applications. Cryptology ePrint Archive, Paper 2019/635. 2019. URL: https :
//eprint.iacr.org/2019/635.

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. URL: https :
//bitcoin.org/bitcoin.pdf.

Ziyan Qu. “Rethinking Execution Layer Front-Running Protection with Threshold En-
cryption” Master’s Thesis. KTH Royal Institute of Technology, 2023. URL: https: //
kth.diva-portal.org/smash/get/diva2:1801732/FULLTEXTO1.pdf.

randao.org. Randao: Verifiable Random Number Generation. 2017. URL: https://rand

ao.org/whitepaper/Randao_v0.85_en.pdf.

Sharon Goldberg, Leonid Reyzin, Dimitrios Papadopoulos, and Jan V¢elak. Verifiable
Random Functions (VRFs). RFC 9381. Aug. 2023.D01: 10. 17487 /RFC9381. URL: ht tps:
//www.rfc-editor.org/info/rfc9381.

Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-release
Crypto. 1996. URL: https://people.csail.mit.edu/rivest/pubs/RSW96.
pdf.

Michael Scott. “Computing the Tate Pairing.” In: Topics in Cryptology — CT-RSA 2005.
Ed. by Alfred Menezes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 293—
304. ISBN: 978-3-540-30574-3.

Victor Shoup and Rosario Gennaro. “Securing Threshold Cryptosystems against Chosen

Ciphertext Attack” In: J. Cryptology 15 (2002), pp. 75-96.D01: 10.1007/500145-001 -
0020-9.

Shutter Network. Rolling Shutter: MEV Protection Built Into Layer 2. 2022. URL: https:
//blog.shutter.network/announcing-rolling-shutter/.

Chrysoula Stathakopoulou, Signe Riisch, Marcus Brandenburger, and Marko Vukoli¢.
“Adding Fairness to Order: Preventing Front-Running Attacks in BFT Protocols using
TEEs” In: 2021 4oth International Symposium on Reliable Distributed Systems (SRDS).
2021, pp. 34—45. DOI: 10.1109/SRDS53918.2021.00013.

45

https://eprint.iacr.org/2022/1066
https://www.snb.ch/dam/jcr:2cc1b322-39d7-45ea-a91c-b57dd1e43e43/sem_2022_06_03_maire.n.pdf
https://www.snb.ch/dam/jcr:2cc1b322-39d7-45ea-a91c-b57dd1e43e43/sem_2022_06_03_maire.n.pdf
https://www.snb.ch/dam/jcr:2cc1b322-39d7-45ea-a91c-b57dd1e43e43/sem_2022_06_03_maire.n.pdf
https://arxiv.org/abs/2406.00113
https://eprint.iacr.org/2019/635
https://eprint.iacr.org/2019/635
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://kth.diva-portal.org/smash/get/diva2:1801732/FULLTEXT01.pdf
https://kth.diva-portal.org/smash/get/diva2:1801732/FULLTEXT01.pdf
https://randao.org/whitepaper/Randao_v0.85_en.pdf
https://randao.org/whitepaper/Randao_v0.85_en.pdf
https://doi.org/10.17487/RFC9381
https://www.rfc-editor.org/info/rfc9381
https://www.rfc-editor.org/info/rfc9381
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf
https://doi.org/10.1007/s00145-001-0020-9
https://doi.org/10.1007/s00145-001-0020-9
https://blog.shutter.network/announcing-rolling-shutter/
https://blog.shutter.network/announcing-rolling-shutter/
https://doi.org/10.1109/SRDS53918.2021.00013

[TSH22]

[Vic61]

[Wan22]

[Wan23]

[Wes18]

[Woo24]

[Xia+21]

[Zha+24]

[Zhu22]

Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid. “Blockchain Scal-
ing Using Rollups: A Comprehensive Survey.” In: IEEE Access 10 (2022), pp. 93039—-93054.
DOI: 10.1109/ACCESS.2022.3200051.

William Vickrey. “Counterspeculation, Auctions, and Competitive Sealed Tenders.” In:
The Journal of Finance 16.1 (1961), pp. 8—37. DOI: https://doi.org/10.1111/j.
1540-6261.1961.tb02789.x. URL: https://sci-hub.st/https://doi.org/
10.1111/3.1540-6261.1961.tb02789.x.

John Wang. A Succinct Deconstruction of Lz MEV. 2022. URL: https://x.com/jOhnw
ang/status/1489268468771872775 (visited on 06/20/2024).

Shufan Wang. “Execution Layer Based Front-running Protection on Ethereum.” Master’s
Thesis. Ecole Polytechnique Fédérale de Lausanne, 2023. URL: https : / / www . epf
1.ch/labs/dedis/wp-content/uploads/2023/01/report-2022-3-

ShufanWang-FrontRunningProtection.pdf.

Benjamin Wesolowski. Efficient verifiable delay functions. Cryptology ePrint Archive,
Paper 2018/623. 2018. URL: https://eprint.iacr.org/2018/623.

Gavin Wood. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Paris ver-
sion 705168a. 2024. URL: https://ethereum.github.io/yellowpaper/paper.
pdf.

Pengcheng Xia, Haoyu Wang, Zhou Yu, Xinyu Liu, Xiapu Luo, and Guoai Xu. Ethereum
Name Service: the Good, the Bad, and the Ugly. 2021. arXiv: 2104.05185 [cs.CR].

Haoqian Zhang, Michelle Yeo, Vero Estrada-Galinanes, and Bryan Ford. ZeroAuction:
Zero-Deposit Sealed-bid Auction via Delayed Execution. Cryptology ePrint Archive, Paper
2024/189. 2024. URL: https://eprint.iacr.org/2024/189.

Michael Zhu. On Paper to On-Chain: How Auction Theory Informs Implementations. 2022.
URL: https://al6zcrypto.com/posts/article/how-auction- theory-

informs-implementations/.

46

https://doi.org/10.1109/ACCESS.2022.3200051
https://doi.org/https://doi.org/10.1111/j.1540-6261.1961.tb02789.x
https://doi.org/https://doi.org/10.1111/j.1540-6261.1961.tb02789.x
https://sci-hub.st/https://doi.org/10.1111/j.1540-6261.1961.tb02789.x
https://sci-hub.st/https://doi.org/10.1111/j.1540-6261.1961.tb02789.x
https://x.com/j0hnwang/status/1489268468771872775
https://x.com/j0hnwang/status/1489268468771872775
https://www.epfl.ch/labs/dedis/wp-content/uploads/2023/01/report-2022-3-ShufanWang-FrontRunningProtection.pdf
https://www.epfl.ch/labs/dedis/wp-content/uploads/2023/01/report-2022-3-ShufanWang-FrontRunningProtection.pdf
https://www.epfl.ch/labs/dedis/wp-content/uploads/2023/01/report-2022-3-ShufanWang-FrontRunningProtection.pdf
https://eprint.iacr.org/2018/623
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://arxiv.org/abs/2104.05185
https://eprint.iacr.org/2024/189
https://a16zcrypto.com/posts/article/how-auction-theory-informs-implementations/
https://a16zcrypto.com/posts/article/how-auction-theory-informs-implementations/

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Blockchain Networks
	Auctions
	Maximum Extractable Value
	Commit and Reveal
	Delayed Execution
	Cryptographic Primitives
	Ethereum Specifics

	Design
	Requirements
	Timed Release
	Symmetric Encryption

	Implementation
	Data Structures
	Secret Management Committee
	Time-Lock Puzzles
	Application

	Evaluation
	Gas Pricing
	Throughput
	Observations

	Related Work
	Final Considerations

	Conclusion
	Bibliography

